深度学习-【draft】生成对抗网络

1. 介绍GAN

2. Gan的数学原理(GAN背后的理论)

3. Conditional GAN (条件GAN)

研讨厅思路:

背景意义

Generative Adversarial Network(GAN)被引次数:26083次

Ian J. Goodfellow:phD

Goodlflow-phD

https://github.com/hindupuravinash/the-gan-zoo

cumulative_gans.jpg

GAN的应用

GAN的原理

image-20210105212933337

调节Generator和Discrimnator的训练次数比。一般来说,Discrimnator要训练的比Genenrator多。比如训练五次Discrimnator,再训练一次Genenrator(WGAN论文 是这么干的)。这一条不一定对!

GAN的训练过程

GAN与VAE的比较

image-20210109170402276image-20210109170435958

image-20210112105214591

image-20210112110242541

GAN的发展

http://nooverfit.com/wp/独家|gan大盘点,聊聊这些年的生成对抗网络-lsgan-wgan-cgan-info/

10个必读的GAN

WGAN,DCGAN,CGAN,Improved Techniques for Training GANs

优化GAN的方法

(1) 结构上的改进CGAN

(2)除了结构上的改进还有,loss, 模型初始化和权重上的改进

(3)GAN的重要实现

目前各领域最先进的GAN

GAN研究方向汇总(附源码) - 清华阿罗的文章 - 知乎 https://zhuanlan.zhihu.com/p/69305310

image-20210110202318149

Level 0: Definition of GANs

Level Title authors Publication Links
Beginner GAN : Generative Adversarial Nets Goodfellow & et al. NeurIPS (NIPS) 2014 link
Beginner GAN : Generative Adversarial Nets (Tutorial) Goodfellow & et al. NeurIPS (NIPS) 2016 Tutorial link
Beginner CGAN : Conditional Generative Adversarial Nets Mirza & et al. -- 2014 link
Beginner InfoGAN : Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets Chen & et al. NeuroIPS (NIPS) 2016

Level 1: Improvements of GANs training

然后看看 loss、参数、权重的改进:

Level Title Co-authors Publication Links
Beginner LSGAN : Least Squares Generative Adversarial Networks Mao & et al. ICCV 2017 link
Advanced Improved Techniques for Training GANs Salimans & et al. NeurIPS (NIPS) 2016 link
Advanced WGAN : Wasserstein GAN Arjovsky & et al. ICML 2017 link
Advanced WGAN-GP : improved Training of Wasserstein GANs 2017 link
Advanced Certifying Some Distributional Robustness with Principled Adversarial Training Sinha & et al. ICML 2018 linkcode

Level 2: Implementation skill

GAN的实现

Title Co-authors Publication Links size FID/IS
Keras Implementation of GANs Linder-Norén Github link
GAN implementation hacks Salimans paper & Chintala World research linkpaper
DCGAN : Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Radford & et al. 2015.11-ICLR 2016 linkpaper 64x64 human
ProGAN:Progressive Growing of GANs for Improved Quality, Stability, and Variation Tero Karras 2017.10 paperlink 1024x1024 human 8.04
SAGAN:Self-Attention Generative Adversarial Networks Han Zhang & Ian Goodfellow 2018.05 paperlink 128x128 obj 18.65/52.52
BigGAN:Large Scale GAN Training for High Fidelity Natural Image Synthesis Brock et al. 2018.09-ICLR 2019 demopaperlink 512x512 obj 9.6/166.3
StyleGAN:A Style-Based Generator Architecture for Generative Adversarial Networks Tero Karras 2018.12 paperlink 1024x1024 human 4.04

GAN的应用 Level 3: GANs Applications

图像翻译 (Image Translation) 超分辨率 (Super-Resolution) 图像上色(Colourful Image Colorization)
图像修复(Image Inpainting) 图像去噪(Image denoising) 交互式图像生成

JS散度在没有重合的时候,是常数log2,分辨不出来

image-20210111131150941

LSGAN

image-20210111131817659

WGAN

image-20210111135312650image-20210111135334561

image-20210111134930564

image-20210112232646090