决策树(2)C4-5

一、C4.5

C4.5 算法最大的特点是克服了 ID3 对特征数目的偏重这一缺点,引入信息增益率来作为分类标准。

C4.5 相对于 ID3 的缺点对应有以下改进方式:

  • 引入悲观剪枝策略进行后剪枝
  • 引入信息增益率作为划分标准;
  • 将连续特征离散化,假设 n 个样本的连续特征 A 有 m 个取值,C4.5 将其排序并取相邻两样本值的平均数共 m-1 个划分点,分别计算以该划分点作为二元分类点时的信息增益,并选择信息增益最大的点作为该连续特征的二元离散分类点;
  • 对于缺失值的处理可以分为两个子问题:
  • 问题一:在特征值缺失的情况下进行划分特征的选择?(即如何计算特征的信息增益率)
    • C4.5 的做法是:对于具有缺失值特征,用没有缺失的样本子集所占比重来折算;
  • 问题二:选定该划分特征,对于缺失该特征值的样本如何处理?(即到底把这个样本划分到哪个结点里)
    • C4.5 的做法是:将样本同时划分到所有子节点,不过要调整样本的权重值,其实也就是以不同概率划分到不同节点中。

1.2 划分标准

利用信息增益率可以克服信息增益的缺点,其公式为:

\[ \operatorname{Gain}_{\text {ratio }}(D, A) =\frac{\operatorname{Gain}(D, A)}{H_{A}(D)} \\ \]

\[ H_{A}(D)=-\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} \log _{2} \frac{\left|D_{i}\right|}{|D|} \]

信息增益率对可取值较少的特征有所偏好(分母越小,整体越大),因此 C4.5 并不是直接用增益率最大的特征进行划分,而是使用一个启发式方法:先从候选划分特征中找到信息增益高于平均值的特征,再从中选择增益率最高的。

1.3 剪枝策略

为什么要剪枝:过拟合的树在泛化能力的表现非常差。

预剪枝和悲观剪枝

1.3.1 预剪枝

在节点划分前来确定是否继续增长,及早停止增长的主要方法有:

  • 节点内数据样本低于某一阈值
  • 所有节点特征都已分裂;
  • 节点划分前准确率比划分后准确率高。

预剪枝不仅可以降低过拟合的风险而且还可以减少训练时间,但另一方面它是基于“贪心”策略,会带来欠拟合风险。

1.3.2 后剪枝【悲观剪枝方法】 http://gitlinux.net/2019-06-04-C45/

在已经生成的决策树上进行剪枝,从而得到简化版的剪枝决策树。

C4.5 采用的悲观剪枝方法,用递归的方式从低往上针对每一个非叶子节点,评估用一个最佳叶子节点去代替这课子树是否有益。如果剪枝后与剪枝前相比其错误率是保持或者下降,则这棵子树就可以被替换掉。C4.5 通过训练数据集上的错误分类数量来估算未知样本上的错误率

后剪枝决策树的欠拟合风险很小,泛化性能往往优于预剪枝决策树。但同时其训练时间会大的多。

1.4 缺点

  • 剪枝策略可以再优化;
  • C4.5 用的是多叉树,用二叉树效率更高;
  • C4.5 只能用于分类
  • C4.5 使用的熵模型拥有大量耗时的对数运算,连续值还有排序运算
  • C4.5 在构造树的过程中,对数值属性值需要按照其大小进行排序,从中选择一个分割点,所以只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时,程序无法运行。